If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11t^2+17t-240=0
a = 11; b = 17; c = -240;
Δ = b2-4ac
Δ = 172-4·11·(-240)
Δ = 10849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{10849}}{2*11}=\frac{-17-\sqrt{10849}}{22} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{10849}}{2*11}=\frac{-17+\sqrt{10849}}{22} $
| 5^x=40x^-1/2 | | a^-¹=2 | | m+16.2/2=3.5 | | 8x-17=-5x+7 | | 2.2x-26=1.7x+5 | | -4(h+19)=0 | | 3.5t^2-13t-120=0 | | 0.333(x+0.5)=0.5(0.5x+1) | | -15-10z=-12z+5 | | 6.9=8^x | | 4a-3(a-2)=(3a+-2) | | 16n-18=14n | | 4a-3(a+-2)=(3a+-2 | | -18q=-17q+11 | | 19p+10=6+20p | | 18g-18=19g+2g+9 | | 24-v=205 | | 〖3x〗^2-21x-6=0 | | y=21÷58 | | 3x^2-19x+3=0 | | 13/14=91/x | | 4m-5(3m+10)=-126 | | 5/2y=11 | | 2w+-3=-14.8 | | 1(1+r)^10=2 | | 0.75x-6=7x+3 | | 3/4x-6=7x+3 | | 2(3x-12)=3(2x-8) | | 8x+16=189 | | 1^2(x+8^3)=9^2 | | 3y+32y+12=0 | | 1/2(x+8/3)=9/2 |